Blind Identification of Out-of-Cell Users in DS-CDMA
نویسندگان
چکیده
In the context of multiuser detection for the DS-CDMA uplink, out-of-cell interference is usually treated as Gaussian noise, possibly mitigated by overlaying a long random cell code on top of symbol spreading. Different cells use statistically independent long codes, thereby providingmeans for statistical out-of-cell interference suppression.When the total number of (in-cell plus outof-cell) users is less than the spreading gain, subspace identification techniques are applicable. If the base station is equipped with multiple antennas, then completely blind identification is possible via three-dimensional low-rank decomposition. This works with more users than spreading and antennas, but a purely algebraic solution is missing. In this paper, we develop an algebraic solution under the premise that the codes of the in-cell users are known. The codes of out-of-cell users and all array steering vectors are unknown. In this pragmatic scenario, we show that in addition to algebraic solution, better identifiability is possible. Our approach yields the best known identifiability result for three-dimensional low-rank decomposition when one of the three component matrices is partially known, albeit noninvertible. Simulations show that the proposed identification algorithm remains close to the pertinent asymptotic (symbol-independent) Cramér-Rao bound, which is also derived herein.
منابع مشابه
Nonlinear Multiuser Receiver for Optimized Chaos-Based DS-CDMA Systems
Chaos based communications have drawn increasing attention over the past years. Chaotic signals are derived from non-linear dynamic systems. They are aperiodic, broadband and deterministic signals that appear random in the time domain. Because of these properties, chaotic signals have been proposed to generate spreading sequences for wide-band secure communication recently. Like conventional DS...
متن کاملA Novel Multi-user Detection Approach on Fluctuations of Autocorrelation Estimators in Non-Cooperative Communication
Recently, blind multi-user detection has become an important topic in code division multiple access (CDMA) systems. Direct-Sequence Spread Spectrum (DSSS) signals are well-known due to their low probability of detection, and secure communication. In this article, the problem of blind multi-user detection is studied in variable processing gain direct-sequence code division multiple access (VPG D...
متن کاملBlind Interference Suppression for Ds-cdma
The use of a blind scheme for suppressing interference in direct-sequence code-division multiple-access (DS /CDMA) communication systems is investigated. In particular, we use a blind version of the partial-bit DS/CDMA receiver to successfully suppress narrow-band and nearfar multiple-access interference without requiring knowledge of other users’ spreading codes, timing or phase information. P...
متن کاملJoint Closed-Loop Power Control and Base Station Assignment for DS-CDMA Receiver in Multipath Fading Channel with Adaptive Beamforming Method
In this paper, we propose smart step closed-loop power control (SSPC) algorithm and base station assignment based on minimizing the transmitter power (BSAMTP) technique in a direct sequence-code division multiple access (DS-CDMA) receiver in the presence of frequency-selective Rayleigh fading. This receiver consists of three stages. In the first stage, with conjugate gradient (CG) adaptive ...
متن کاملThroughput Improvement of STS-Based MC DS-CDMA System with Variable Spreading Factor
The throughput enhancement of Space-Time Spreading (STS)-based Multicarrier Direct Sequence Code Division Multiple Access (MC DS-CDMA) system is investigated in this paper. Variable Spreading Factor (VSF) is utilized to improve the data throughput of the system. In this contribution, an analytical approach is proposed to compute a new expression for the Bit Error Rate (BER) performance of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003